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Abstract 

ll unmanned aerial vehicles that use synthetic aperture radar (SAR) systems are equipped with inertial navigation systems 

(INS) to reduce motion error. Additional motion compensation (MOCOMP) from the data itself is still necessary to  

achieve required accuracy of a SAR. An affordable method for small drones has yet to be created. We propose machine 

learning with deep convolutional neural network (CNN) to extract motion error such as sway (right and left) and surge 

(forward). Results show that the CNN is capable of recognizing gradual drone motion deviations. It has the potential to pick up 

sudden motion error as well, overcoming major deficiencies of traditional MOCOMP methods, and the need for INS.  

 

1 Introduction  

For radar imaging, long and straight antennas produce better resolution. Synthetic aperture radar (SAR) mimics long 

antennas by sending multiple radar pulses from a short antenna traveling across a distance equivalent to the size of the 

synthetic “large” antenna. SAR is useful for ground imaging when it is mounted on aerial vehicles like airplanes, 

helicopters, and satellites at appropriate altitudes [1,2]. SAR allows for weather-resistant and any time of day imaging, 

with resolution comparable to optical imaging, as long as the radar platform maintain a steady velocity in a straight 

trajectory. Unmanned aerial vehicles (UAV) fly lower and weigh less than other space-borne and larger airborne vehicles 

and are more susceptible to turbulence and trajectory deviation. This distorts data even when UAV are equipped with 

inertial navigation system (INS)/global positioning system (GPS). Highly accurate INS is expensive and heavy for light-

weight drones and the motion compensation dependent on INS for data extraction is for gradual (across 1 meter) 

deviations. Other existing algorithms for radar data extraction mainly correct for sudden motion deviations, leaving out 

the gradual deviations.  

An alternative solution to the motion correction of SAR imaging is presented in this paper. We propose machine 

learning technique, namely a deep convolutional neural network (deep CNN). Neural networks have been used to classify 

subjects of optical images such as objects, places, and signatures, and has been used to improve the resolution of optical 

images [3,4]. A CNN was chosen because it minimizes weights by assembling simple patterns of weights to save 

computational time [5,6]. Neural nets rely on randomized gradient decent techniques to minimize the error of the 

prediction and actual sway by training with data sets and the answer key; no hardware is required. When the neural net is 

trained with lots of simulated data, the resulting algorithm is generalizable to various real data. A set of radar data holds 

the information necessary to train the net for deviation prediction. Our CNN primarily pick up gradual motion errors in 

radar data to predict the path deviation, leaving the more rapidly varying errors for traditional MOCOMP algorithms. This 

technique is a lighter and cheaper alternative to INS.  

 

2 The background of SAR and SAR motion error 
 

In this simulation, the radar is directed perpendicular to the flight trajectory. Point target reflectors backscatter the radar 

signal and their range is estimated by the time at which the signal returns. Surge does not greatly impact the range estimate, 

because its motion is perpendicular to the signal. Drones fly over fields of interest at altitudes of ten to several hundred 

feet. When the range is larger than the height of the drone the effective heave is also small compared to sway. Because 

surge and heave produce less motion error, this research is focused on predicting sway, although the discussion below is 

more general and encompasses both sway and surge. 

Figure 1 illustrates the motion error with sway and surge. If the flight is expected to be along the x-axis, at constant 

height z, the actual path, starting from the origin o, is the expressed as 𝐷(𝑥′, 𝑦′, 𝑡). Expected position is 𝐷(𝑥0, 𝑦0, 𝑡). The 
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motion error is the absolute difference between the expected flight and motion error vectors. To simulate a natural-looking 
 

 
 

 

 

 motion deviation, a Lorentzian-like Power Spectral Density (PSD) was used. The PSD is an inverse-power law but with an 

appropriate cutoff parameter at small wave numbers. A power of three was chosen for sway. The final solution for sway 

looks like 

where it takes the real part of the inverse Fourier transform,  

ℱ−1  of the square-root of the PSD multiplied by Z(j), the unit 

variance Gaussian distribution of random complex numbers. The 

j refers to the index in the along-track wavenumber domain. 

A different motion error is generated for each dataset, 

simulated on Matlab. Since the signal beam decays with 

increasing angle, the beam function should look like a sinc-

function, or roughly a Gaussian function. Targets of unknown 

material will have a variety of phase shifts, which can be 

expressed in a complex number. The final solution for the 

received signal is 

Sig(i) = B(𝜃𝑖, b) P(r𝑝; 𝑟𝑖 , w) O(r𝑖) H(i), (2) 

where i refers to a specific target. The B is the Gaussian beam 

function, determined by the target angle and beam width. The P 

is the Gaussian Pulse function, determined by the pulse length, 

the target placement, and the pulse width. The O is the complex 

phase function for the propagation to and from the target. The H 

is the Gaussian distribution of random complex numbers with 

unit variance. The signal, will have a slightly altered amplitude 

and a phase shift, complying with the natural properties of each 

ground target reflector. The dataset is the sum of the signals of each target at each position of the drone. 

 
 

 

3 The background of Convolutional Neural Network 
 

For the CNN, Tensorflow was the engine, and NumPy and matplotlib were computational tools used in a python 

environment. Convolutional layers save computational time by introducing filters to convolve the data. These filters 

minimize weights by sliding across a whole dataset (with stride set as two) to produce feature maps based off each filter’s 

characteristics. The CNN consists of seven layers, a convolution layer, a maxpooling layer, a second convolution layer, a 

second maxpooling layer, a third convolution layer, a flatten layer, and finally, a dense layer.  

The maxpooling layer is between each convolutional layer to decrease the resolution to about one-fourth, saving 

computation time. This is done by taking four neighboring pixels and replaces it with a single pixel of maximum strength. 

The flatten layer transforms the square datasets into a 1-D array to be used in the dense layer. The dense layer will make 

the CNN densely connected to the final output, so that all the data is used to predict sway. The CNN will output an array of 

1x200 for each data set which will be a function of position x.  

Table 1 is a summary of the CNN model. In the second column, the dimensions of the filters are given. The first two 

numbers are filter sizes and the third number is the filters. The same applies to the third column, which are the feature 

maps. The fourth column is the count of all the weights of each layer. The total number of weights are listed in the bottom, 

which are all trainable. The model was trained with 8,000 datasets along with their sway. Each epoch is responsible for 

minimizing the cost function by randomly selecting parameters to adjust, averting local minimums. The cost function does 

not change appreciably after ten epochs. Tensorflow compared the predictions to the actual deviation information and 

made adjustments to the weights to minimize the error. The other two-2000 datasets were used to test the trained model. 

 

Model: sequential 

Layer (type) Filter size Output shape Parameter number 

Convolution 2D (1) (9,9,48) (96, 96, 48) 3936 

MaxPooling (1) (None) (48, 48, 48) 0 

Convolution 2D (2) (4,4,32) (23 23, 32) 24608 

MaxPooling (2) (None) (11, 11, 32) 0 

Convolution 2D (3) (3,3,24) (9, 9, 24) 6936 

Flatten (None) (1944) 0 

Dense (None) (200) 389000 

Trainable parameters: 424, 480 Total parameters: 424,480 

Non-trainable parameters: 0 Epochs: 10 

Sway = ℛe (ℱ−1 (√PSD ∗ Z(𝑗))), (1) 

Figure 1: The sway and surge. The expected path 

is along the x-axis whereas the actual path 

deviates from this. The two dots refer to the 

position expected at time t and the actual 

position. 
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4 Results 
 

The simulated radar data is a 200x200 dataset collected along a track distance of 100 meters. The range of the targets are 

20-120 meters. Arbitrary target placement is represented by bright dots on the scene, which are proportional to the absolute 

value of its signal strength in Fig. 2a. The corresponding raw radar data in an ideal, error-free environment has smooth and 

symmetric arches which are the radii from a target to the drone at each along-track position (Fig. 2b). The peaks correlate 

to the target positions and agree with Fig. 2a. In a natural setting, raw radar data has motion error, as shown in Fig. 3a. The 

arches are distorted by sway and surge.  At each 

position along the track, the radius of each target has 

the same sway and surge displacement since each 

signal is offset the same amount by the drone’s 

movement. The dotted lines in Fig. 3 show where the 

bumps in the predicted sway (b) visibly affect the 

radar data (a). The position along the zero in (b) refers 

to the ideal trajectory, which the blue function 

deviates away from, at a maximum of -1 meter range 

at position 150. Along-track trajectory is calculated in 

increments of every half-meter which corresponds to 

the resolution. The dotted lines show the visible 

effects that sway has on the data. Peaks appear where 

there are sudden changes in direction of sway. 

Gradual changes are not as easily distinguished. 

Nonetheless, the CNN uses these distortions to 
predict a sway similar to Fig. 3b. 

Multiple datasets and their corresponding original sway (red) and 

predicted sway (blue) is shown in Fig. 4. The predicted sway graph is the same 

track-distance as the data but elongated to show detail. The test datasets have 

their own unique placements of targets and sway which the CNN had never 

trained with before. The predictions follow the general pattern of the real 

sway. Unlike standard SAR MOCOMP techniques, the CNN picks up gradual 

motion deviations easily. The red lines tend to peak faster than the blue, 

because the CNN is thus far incapable of predicting the rapidly varying sway. 

Possible training to pick up rapidly varying sway remains inconclusive. But 

traditional MOCOMP can already compensate for this and could possibly reinforce the CNN.   

The convolutional filters grab the “key elements” of the data to find sway. Figure 5 shows six of the 48 filters from the 

first convolutional layer. The combined weights create unique gashes, bars, and holes (see orange circles). What data they 

single out can be seen by their feature maps. To the right of each filter is a feature map they produced from a single scene. 

The filter a.i picks up positive slopes, because its feature map only shows the left side of the data arches, and f.i appears to 

(0.5 m) 

 

Figure 2: (a) Arbitrary target placement and signal strength 

(brightness). (b) The raw radar data collected in an ideal, 

motion-error-free environment. 

Figure 4: Examples of radar data with predictions on their right. The real 

sway (red) and the prediction (blue) are both normalized so that the average 

position is zero.  

Figure 3: (a) The raw radar data 

collected in a non-ideal motion-error 

environment. (b) The prediction of the 

sway motion error.   

Table 1: A summary of the CNN. The types, filter size, output shape, and parameter numbers are all 

listed. On the bottom all the parameters are listed as trainable. The number of epochs are given. 
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do the same thing. Filter, e.i, picks up the negative surroundings by creating a feature map that is mostly light purple.  

 
 

 
 

 

 

 

The data collected for two target rich scenes and two target lacking scenes is shown in Fig. 6. For the top two 

predictions, they predict accurately except at the previously mentioned sharp humps, which is the case for all the predicted 

sway. For the bottom two predictions, they predict just as accurately as the top data. Unless there are weak targets in Fig 

6.e and 6.g that are observable only to the CNN, it is robust with few targets.  

 

5 Conclusion 
 

This paper summarizes the characteristics and results of a machine learning technique to predict motion error. The CNN 

produces predictions resembling the gradual motion deviations in the sway model. The CNN is robust in handling the range 

of targets that comprise the datasets. However, the full capacity of the machine learning technique has not been tested. The 

CNN has room for improvement. The results showed a model with first convolutional layer that had filter sizes large enough 

to find gradual motion 

deviation. However, creating 

smaller filters might force them 

to match smaller motion 

deviations. An additional way 

to improving predictions would 

involve an iterative process of 

correcting data with the 

predictions. This corrected data 

could be run through a new 

prediction model to find the 

residual sway until desired 

results are produced. Since 

traditional MOCOMP does not 

prove useful for gradual motion 

deviations, a hybrid solution of 

MOCOMP and this technique is 

worthy of researching.  

The machine learning with convolutional neural networking technique is easy to use and quick to run, perfect for 

aerial platforms such as small drones. Overcoming many of the limitations of traditional MOCOMP, it has the potential to 

replace these traditional techniques.  
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